184 research outputs found

    Preparation of Green Biosorbent using Rice Hull to Preconcentrate, Remove and Recover Heavy Metal and Other Metal Elements from Water

    Get PDF
    Sodium hydroxide treated rice hulls were investigated to preconcentrate, remove, and recover metal ions including Be2+, Al3+, Cr3+, CO2+, Ni2+, Cu2+, Zn2+, Sr2+, Ag+, Cd2+, Ba2+, and Pb2+ in both batch mode and column mode. Sodium hydroxide treatment significantly improved the removal efficiency for all metal ions of interest compared to the untreated rice hull. The removal kinetics were extremely fast for Co, Ni, Cu, Zn, Sr, Cd, and Ba, which made the treated rice hull a promising economic green adsorbent to preconcentrate, remove, and recover low-level metal ions in column mode at relatively high throughput. The principal removal mechanism is believed to be the electrostatic attraction between the negatively charged rice hulls and the positively charged metal ions. pH had a drastic impact on the removal for different metal ions and a pH of 5 worked best for most of the metal ions of interest. Processed rice hulls provide an economic alternative to costly resins that are currently commercially available products designed for metal ion preconcentration for trace metal analysis, and more importantly, for toxic heavy metal removal and recovery from the environment

    Absolute Wrong Makes Better: Boosting Weakly Supervised Object Detection via Negative Deterministic Information

    Full text link
    Weakly supervised object detection (WSOD) is a challenging task, in which image-level labels (e.g., categories of the instances in the whole image) are used to train an object detector. Many existing methods follow the standard multiple instance learning (MIL) paradigm and have achieved promising performance. However, the lack of deterministic information leads to part domination and missing instances. To address these issues, this paper focuses on identifying and fully exploiting the deterministic information in WSOD. We discover that negative instances (i.e. absolutely wrong instances), ignored in most of the previous studies, normally contain valuable deterministic information. Based on this observation, we here propose a negative deterministic information (NDI) based method for improving WSOD, namely NDI-WSOD. Specifically, our method consists of two stages: NDI collecting and exploiting. In the collecting stage, we design several processes to identify and distill the NDI from negative instances online. In the exploiting stage, we utilize the extracted NDI to construct a novel negative contrastive learning mechanism and a negative guided instance selection strategy for dealing with the issues of part domination and missing instances, respectively. Experimental results on several public benchmarks including VOC 2007, VOC 2012 and MS COCO show that our method achieves satisfactory performance.Comment: 7 pages, 5 figure

    Explaining the differences of gait patterns between high and low-mileage runners with machine learning

    Get PDF
    Running gait patterns have implications for revealing the causes of injuries between higher-mileage runners and low-mileage runners. However, there is limited research on the possible relationships between running gait patterns and weekly running mileages. In recent years, machine learning algorithms have been used for pattern recognition and classification of gait features to emphasize the uniqueness of gait patterns. However, they all have a representative problem of being a black box that often lacks the interpretability of the predicted results of the classifier. Therefore, this study was conducted using a Deep Neural Network (DNN) model and Layer-wise Relevance Propagation (LRP) technology to investigate the differences in running gait patterns between higher-mileage runners and low-mileage runners. It was found that the ankle and knee provide considerable information to recognize gait features, especially in the sagittal and transverse planes. This may be the reason why high-mileage and low-mileage runners have different injury patterns due to their different gait patterns. The early stages of stance are very important in gait pattern recognition because the pattern contains effective information related to gait. The findings of the study noted that LRP completes a feasible interpretation of the predicted results of the model, thus providing more interesting insights and more effective information for analyzing gait patterns

    New insights for the design of bionic robots:adaptive motion adjustment strategies during feline landings

    Get PDF
    Felines have significant advantages in terms of sports energy efficiency and flexibility compared with other animals, especially in terms of jumping and landing. The biomechanical characteristics of a feline (cat) landing from different heights can provide new insights into bionic robot design based on research results and the needs of bionic engineering. The purpose of this work was to investigate the adaptive motion adjustment strategy of the cat landing using a machine learning algorithm and finite element analysis (FEA). In a bionic robot, there are considerations in the design of the mechanical legs. (1) The coordination mechanism of each joint should be adjusted intelligently according to the force at the bottom of each mechanical leg. Specifically, with the increase in force at the bottom of the mechanical leg, the main joint bearing the impact load gradually shifts from the distal joint to the proximal joint; (2) the hardness of the materials located around the center of each joint of the bionic mechanical leg should be strengthened to increase service life; (3) the center of gravity of the robot should be lowered and the robot posture should be kept forward as far as possible to reduce machine wear and improve robot operational accuracy

    Altering the Alkaline Metal Ions in Lepidocrocite-Type Layered Titanate for Sodium-Ion Batteries

    Get PDF
    The relatively large ionic radius of the Na ion is one of the primary reasons for the slow diffusion of Na ions compared to that of Li ions in de/intercalation processes in sodium-ion batteries (SIBs). Interlayer expansion of intercalation hosts is one of the effective techniques for facilitating Na-ion diffusion. For most ionic layered compounds, interlayer expansion relies on intercalation of guest ions. It is important to investigate the role of these ions for material development of SIBs. In this study, alkali-metal ions (Li+, Na+, K+, and Cs+) with different sizes were intercalated into lepidocrocite-type layered titanate by a simple ion-exchange technique to achieve interlayer modulation and those were then evaluated as anode materials for SIBs. By controlling the intercalated alkaline ion species, basal spacings of layered titanates (LTs) in the range of 0.68 to 0.85 nm were obtained. Interestingly, the largest interlayer spacing induced by the large size of Cs did not yield the best performance, while the Na intercalated layered titanate (Na-ILT) demonstrated a superior performance with a specific capacity of 153 mAh g–1 at a current density of 0.1 A g–1. We found that the phenomena can be explained by the high alkaline metal ion concentration and the efficient utilization of the active sites in Na-ILT. The detailed analysis indicates that large intercalating ions like Cs can hamper sodium-ion diffusion although the interlayer spacing is large. Our work suggests that adopting an appropriate interlayer ion species is key to developing highly efficient layered electrode materials for SIBs

    An online tool for predicting ovarian responses in unselected patients using dynamic inhibin B and basal antimĂĽllerian hormone levels

    Get PDF
    BackgroundReliable predictive models for predicting excessive and poor ovarian response in controlled ovarian stimulation (COS) is currently lacking. The dynamic (Δ) inhibin B, which refers to increment of inhibin B responding to exogenous gonadotropin, has been indicated as a potential predictor of ovarian response.ObjectiveTo establish mathematical models to predict ovarian response at the early phase of COS using Δinhibin B and other biomarkers.Materials and methodsProspective cohort study in a tertiary teaching hospital, including 669 cycles underwent standard gonadotropin releasing hormone (GnRH) antagonist ovarian stimulation between April 2020 and September 2020. Early Δinhibin B was defined as an increment in inhibin B from menstrual day 2 to day 6 through to the day of COS. Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression with 5-fold cross-validation was applied to construct ovarian response prediction models. The area under the receiver operating characteristic curve (AUC), prevalence, sensitivity, and specificity were used for evaluating model performance.ResultsEarly Δinhibin B and basal antimüllerian hormone (AMH) levels were the best measures in building models for predicting ovarian hypo- or hyper-responses, with AUCs and ranges of 0.948 (0.887–0.976) and 0.904 (0.836–0.945) in the validation set, respectively. The contribution of the early Δinhibin B was 67.7% in the poor response prediction model and 56.4% in the excessive response prediction model. The basal AMH level contributed 16.0% in the poor response prediction model and 25.0% in the excessive response prediction model. An online website-based tool (http://121.43.113.123:8001/) has been developed to make these complex algorithms available in clinical practice.ConclusionEarly Δinhibin B might be a novel biomarker for predicting ovarian response in IVF cycles. Limiting the two prediction models to the high and the very-low risk groups would achieve satisfactory performances and clinical significance. These novel models might help in counseling patients on their estimated ovarian response and reduce iatrogenic poor or excessive ovarian responses

    A new method proposed to explore the feline's paw bones of contributing most to landing pattern recognition when landed under different constraints

    Get PDF
    Felines are generally acknowledged to have natural athletic ability, especially in jumping and landing. The adage “felines have nine lives” seems applicable when we consider its ability to land safely from heights. Traditional post-processing of finite element analysis (FEA) is usually based on stress distribution trend and maximum stress values, which is often related to the smoothness and morphological characteristics of the finite element model and cannot be used to comprehensively and deeply explore the mechanical mechanism of the bone. Machine learning methods that focus on feature pattern variable analysis have been gradually applied in the field of biomechanics. Therefore, this study investigated the cat forelimb biomechanical characteristics when landing from different heights using FEA and feature engineering techniques for post-processing of FEA. The results suggested that the stress distribution feature of the second, fourth metacarpal, the second, third proximal phalanx are the features that contribute most to landing pattern recognition when cats landed under different constraints. With increments in landing altitude, the variations in landing pattern differences may be a response of the cat's forelimb by adjusting the musculoskeletal structure to reduce the risk of injury with a more optimal landing strategy. The combination of feature engineering techniques can effectively identify the bone's features that contribute most to pattern recognition under different constraints, which is conducive to the grasp of the optimal feature that can reveal intrinsic properties in the field of biomechanics

    A Few-Shot Learning Method for SAR Images Based on Weighted Distance and Feature Fusion

    Get PDF
    Convolutional Neural Network (CNN) has been widely applied in the field of synthetic aperture radar (SAR) image recognition. Nevertheless, CNN-based recognition methods usually encounter the problem of poor feature representation ability due to insufficient labeled SAR images. In addition, the large inner-class variety and high cross-class similarity of SAR images pose a challenge for classification. To alleviate the problems mentioned above, we propose a novel few-shot learning (FSL) method for SAR image recognition, which is composed of the multi-feature fusion network (MFFN) and the weighted distance classifier (WDC). The MFFN is utilized to extract input images’ features, and the WDC outputs the classification results based on these features. The MFFN is constructed by adding a multi-scale feature fusion module (MsFFM) and a hand-crafted feature insertion module (HcFIM) to a standard CNN. The feature extraction and representation capability can be enhanced by inserting the traditional hand-crafted features as auxiliary features. With the aid of information from different scales of features, targets of the same class can be more easily aggregated. The weight generation module in WDC is designed to generate category-specific weights for query images. The WDC distributes these weights along the corresponding Euclidean distance to tackle the high cross-class similarity problem. In addition, weight generation loss is proposed to improve recognition performance by guiding the weight generation module. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset and the Vehicle and Aircraft (VA) dataset demonstrate that our proposed method surpasses several typical FSL methods
    • …
    corecore